Silent information regulator 2alpha, a longevity factor and class III histone deacetylase, is an essential endogenous apoptosis inhibitor in cardiac myocytes.
نویسندگان
چکیده
Yeast silent information regulator 2 (Sir2), a nicotinamide adenine dinucleotide-dependent histone deacetylase (HDAC) and founding member of the HDAC class III family, functions in a wide array of cellular processes, including gene silencing, longevity, and DNA damage repair. We examined whether or not the mammalian ortholog Sir2 affects growth and death of cardiac myocytes. Cardiac myocytes express Sir2alpha predominantly in the nucleus. Neonatal rat cardiac myocytes were treated with 20 mmol/L nicotinamide (NAM), a Sir2 inhibitor, or 50 nmol/L Trichostatin A (TSA), a class I and II HDAC inhibitor. NAM induced a significant increase in nuclear fragmentation (2.2-fold) and cleaved caspase-3, as did sirtinol, a specific Sir2 inhibitor, and expression of dominant-negative Sir2alpha. TSA also modestly increased cell death (1.5-fold) but without accompanying caspase-3 activation. Although TSA induced a 1.5-fold increase in cardiac myocyte size and protein content, NAM reduced both. In addition, NAM caused acetylation and increases in the transcriptional activity of p53, whereas TSA did not. NAM-induced cardiac myocyte apoptosis was inhibited in the presence of dominant-negative p53, suggesting that Sir2alpha inhibition causes apoptosis through p53. Overexpression of Sir2alpha protected cardiac myocytes from apoptosis in response to serum starvation and significantly increased the size of cardiac myocytes. Furthermore, Sir2 expression was increased significantly in hearts from dogs with heart failure induced by rapid pacing superimposed on stable, severe hypertrophy. These results suggest that endogenous Sir2alpha plays an essential role in mediating cell survival, whereas Sir2alpha overexpression protects myocytes from apoptosis and causes modest hypertrophy. In contrast, inhibition of endogenous class I and II HDACs primarily causes cardiac myocyte hypertrophy and also induces modest cell death. An increase in Sir2 expression during heart failure suggests that Sir2 may play a cardioprotective role in pathologic hearts in vivo.
منابع مشابه
Molecular Cardiology Silent Information Regulator 1 Protects the Heart From Ischemia/Reperfusion
Background—Silent information regulator 1 (Sirt1), a class III histone deacetylase, retards aging and protects the heart from oxidative stress. We here examined whether Sirt1 is protective against myocardial ischemia/reperfusion (I/R). Methods and Results—Protein and mRNA expression of Sirt1 is significantly reduced by I/R. Cardiac-specific Sirt1 Ϫ/Ϫ mice exhibited a significant increase (44Ϯ5%...
متن کاملSIRT1 Involvement in Virus-Mediated Diseases
SIRT1, a mammalian homolog of the yeast transcriptional repressor silent information regulator 2 (Sir2), is a nicotinamide adenine dinucleotide (NAD)dependent class III deacetylase and plays important roles in different types of physiological processes including aging, metabolism, apoptosis and neurogenesis, and has been linked to many pathological processes such as cancer, inflammatory and aut...
متن کاملFrom worm to human: bioinformatics approaches to identify FOXO target genes.
Longevity regulatory genes include the Forkhead transcription factor FOXO, in addition to NAD-dependent histone deacetylase silent information regulator 2 (Sir2). The FOXO/DAF-16 family of transcription factors constitute an evolutionarily conserved subgroup within a larger family known as winged helix or Forkhead transcriptional regulators. Here we demonstrate how to identify FOXO target genes...
متن کاملThe role of sirtuins in cardiac disease.
Modification of histones is one of the important mechanisms of epigenetics, in which genetic control is determined by factors other than an individual's DNA sequence. Sirtuin family proteins, which are class III histone deacetylases, were originally identified as gene silencers that affect the mating type of yeast, leading to the name "silent mating-type information regulation 2" (SIR2). They a...
متن کاملSilent information regulator 1 protects the heart from ischemia/reperfusion.
BACKGROUND Silent information regulator 1 (Sirt1), a class III histone deacetylase, retards aging and protects the heart from oxidative stress. We here examined whether Sirt1 is protective against myocardial ischemia/reperfusion (I/R). METHODS AND RESULTS Protein and mRNA expression of Sirt1 is significantly reduced by I/R. Cardiac-specific Sirt1(-/-) mice exhibited a significant increase (44...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 95 10 شماره
صفحات -
تاریخ انتشار 2004